Locality and low-dimensions in the prediction of natural experience from fMRI

نویسندگان

  • François G. Meyer
  • Greg Stephens
چکیده

Functional Magnetic Resonance Imaging (fMRI) provides an unprecedented window into the complex functioning of the human brain, typically detailing the activity of thousands of voxels during hundreds of sequential time points. Unfortunately, the interpretation of fMRI is complicated due both to the relatively unknown connection between the hemodynamic response and neural activity and the unknown spatiotemporal characteristics of the cognitive patterns themselves. Here, we use data from the Experience Based Cognition competition to explore the combination of local methods of prediction with various techniques of dimensionality reduction. We find effective, low-dimensional models based on the principal components of cognitive activity in classically-defined anatomical regions, the Brodmann Areas. For some of the stimuli, the top predictive regions were stable across subjects and episodes, including Wernickes area for verbal instructions, visual cortex for facial and body features, and visual-temporal regions (Brodmann Area 7) for velocity. These interpretations and the relative simplicity of our approach provide a transparent and conceptual basis upon which to build more sophisticated techniques for fMRI decoding. To our knowledge, this is the first time that classical areas have been used in fMRI for an effective prediction of complex natural experience.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presurgical Language Mapping in Patients With Intractable Epilepsy: A Review Study

Introduction: about 20% to 30% of patients with epilepsy are diagnosed with drug-resistant epilepsy and one third of these are candidates for epilepsy surgery. Surgical resection of the epileptogenic tissue is a well-established method for treating patients with intractable focal epilepsy. Determining language laterality and locality is an important part of a comprehensive epilepsy program befo...

متن کامل

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Early detection of MS in fMRI images using deep learning techniques

Introduction & Objective:MS is a disease of the central nervous system in which the body makes a defensive attack on its tissues. The disease can affect the brain and spinal cord, causing a wide range of potential symptoms, including balance, movement and vision problems. MRI and fMRI images are a very important tool in the diagnosis and treatment of MS. The aim of this study was to provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007